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Abstract

This paper presents a constitutive relation for modelling the inelastic response of sedimentary rocks. The inherent
anisotropy of this class of materials is described by employing a second-order microstructure tensor, whose eigenvectors
define the principal material triad. Higher-order dyadic products of this tensor are incorporated in the distribution
function, which specifies the directional dependence of strength parameters. The mathematical formulation is applied to
model the mechanical characteristics of Tournemire shale. Several triaxial tests are simulated, at various initial con-
fining pressures, for samples tested at different orientation relative to the loading direction. The results are compared
with the available experimental data. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Among sedimentary rocks, the most widespread are shale, siltstone and claystone. These rocks, which
are formed by deposits of clay and silt sediment, exhibit strong inherent anisotropy, manifesting itself in a
directional dependence of deformation characteristics. The anisotropy is strongly related to the micro-
structure, in particular the existence of bedding planes which mark the limits of strata and can be easily
identified by a visual examination. The study of the mechanical behaviour of sedimentary rocks, especially
shale and mudstone, is of particular interest to the oil exploration industry as well as to civil and mining
engineering. These materials are often unavoidable in foundations of a broad range of civil structures, in
underground excavations as well as tunnelling.

Over the last few decades, an extensive research effort has been devoted to study the mechanical be-
haviour of anisotropic rocks. Comprehensive references on this topic can be found in a number of review
papers (see e.g., Amadei (1983), Kwasniewski (1993) and Ramamurthy (1993)). One significant direction of
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research has been that involving the experimental component. In general, several experimental studies were
carried out (cf. Donath (1961), McLamore and Gray (1967), Hoek (1968), Atwell and Sandford (1974),
Lerau et al. (1981) and Hoek (1983)) and the main focus was the directional dependence of rock strength.
The results generally indicate that the maximum axial compressive strength is associated with configura-
tions in which the bedding planes are either parallel or perpendicular to the loading direction. At the same
time, the minimum strength is typically associated with failure along the weakness plane, which corre-
sponds to sample orientations within the range 30-60°.

In parallel with experimental studies, extensive research has been carried out on formulation of ap-
propriate general failure criteria. An extensive review on this topic, examining different approaches, is
provided in the article by Duveau et al. (1998). In general, relatively little work has been done on the
description of progressive failure in this class of materials, which stems primarily from difficulties associated
with the formulation of the problem. The rigorous approach, based on general representation theorems for
tensorial functions (Boehler and Sawczuk, 1970, 1977), is very complex and has never been applied to any
practical problem.

The objective of this paper is to propose an approach which retains the mathematical rigour and, at the
same time, is pragmatic, i.e. simple enough to be applied to solve some practical engineering problems. The
formulation incorporates a scalar anisotropy parameter which is expressed in terms of mixed invariants of
the stress and structure-orientation tensors. Such a parameter has recently been introduced by Pietruszczak
and Mroz (2001) in the context of specification of the conditions at failure. The main focus of this work is
on constructing a complete plasticity framework for describing the deformation process in anisotropic
sedimentary rocks. In the next section, the formulation of the problem is outlined, followed by a discussion
on the identification of material functions involved. The formulation is applied to study the behaviour of
Tournemire shale. In particular, several triaxial tests are simulated at different initial confining pressures.
The emphasis is on modelling of the dependence of deformation characteristics on the orientation of the
sample relative to the direction of loading.

2. A constitutive model for anisotropic rocks

Consider first the specification of the conditions at failure. Following the framework developed in

Pietruszczak and Mroz (2001), assume that the failure criterion can be expressed in a simplified form

F = F(c,a) = F(tro,tre’, tre”,5) = 0 (1)
In the above equation, a is a microstructure tensor and # is a scalar anisotropy parameter which represents
the projection of this tensor on a suitably defined loading direction /, i.e.

n = a;lil; (2)
In order to define the loading vector I, consider the principal triad e, i = 1,2, 3, of the microstructure
tensor a and specify the traction moduli on the planes normal to the principal axes

L= (‘7%1 + ‘7%2 + ‘7%3>1/2§ L, = (‘7%2 + ‘732 + 0%3)1/2; Ly = (tff3 + 0'33 + 0§3)1/2 (3)

The generalized loading vector / is now defined as
L; )
(LeLy)'?’

; L= Liel" + Lel? + Lyel (4)

It can be shown (see Pietruszczak and Mroz (2001)) that the traction moduli (3) can be expressed as
mixed invariants of the stress and structure-orientation tensors, so that the projection of @ on the direction /
becomes
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tr(ac?)
tro?
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Thus, the anisotropy parameter 7 specifies the effect of load orientation relative to material axes and is
expressed as the ratio of the joint invariant to the second stress invariant. It is a homogeneous function of
stress of the degree zero, so that the stress magnitude does not affect its value.

Another way of expressing the definition (5) is to employ the deviatoric part A of the microstructure
tensor, so that

n =1 +A4,ll;); Ai; = (ai; — 76) /15 1 = an (6)

The above distribution function is similar to that employed by Kanatani (1984). Here, A is a traceless
symmetric tensor describing the bias in the spatial distribution of 5 (/) with respect to the mean value 7. A
more general expression for 7 can be obtained by including higher-order tensors

n =01 +A4,;L1; + Ay ;L + Aiiamn i L Ly + -+ -) (7)

n=aylil; =

A special case of this representation, which is pursued further in this paper, corresponds to introducing
dyadic products of A4, i.e. 4;jy = bidiAw; Aijiimn = brAijAkiAma, €tc., so that

= [l + Ayl + by (A1) + by(Aylil)’ + -+ ] (8)

With the notion of anisotropy parameter 7, as defined above, let us turn our attention now to the de-
scription of inelastic properties of sedimentary rocks. In general, the problem can be formulated within the
framework of elastoplasticity by assuming the yield criterion in the form

In Eq. (9), f is a scalar-valued function of plastic deformation. The flow rule may now be written as
oy 2 3
de}, = dlaa : Y = Y(tro,tre”, tre’, n) (10)

Y

where 1y = const. is the plastic potential.

A specific formulation can be obtained by a suitable generalization of classical isotropic criteria. Con-
sider, for this purpose, the plasticity framework for brittle-plastic materials as outlined in the article by
Pietruszczak et al. (1988). Assume that the conditions at failure can be described by employing a quadratic
form

(i) oliin) - 01)

In the equation above, & = le/2 = (trs*)'?, I = —tre, 0 = (1/3)sin"' (=3V/3J3/26°) and s is the stress de-
viator. The parameter 0 represents Lode’s angle and is defined within the interval —7/6 < 0 < /6, while
g(0) satisfies g(n/6) = 1, g(—n/6) = K, where K is a constant. Moreover, ¢’s are material constants and f;
represents the uniaxial compressive strength. For an isotropic material f, = const. and the criterion (11) is
path independent. In order to account for inherent anisotropy, assume that f; is affected by the orientation
of the sample and describe its variation by incorporating a distribution function similar to Eq. (8), i.e.

fo=FIU+AyL1 + bi(ALi1) + ba(Ayli1) + -] (12)

Thus, the anisotropy parameter 7, appearing in the general form of the failure criterion (1), is now explicitly
identified with f.. Moreover, since the value of f. depends on the relative orientation of both the stress and
microstructure tensors, the representation (12) implies the path dependency of Eq. (11).
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For further analysis, it is convenient to express Eq. (11) in the form

_ —a+ V(e (s +1/1)
26‘2

F=6-g0)5 =0 & fe (13)

The yield function may now be assumed in a functional form similar to Eq. (13), i.e.
f=7-p(&g0)g. =0 (14)

Here, f C (0,1) is a hardening function, and ¢ is a suitably chosen damage parameter. Restricting the
considerations to the ductile regime, the function f can be selected in a simple hyperbolic form

. ¢
where B is a material constant and e represents the strain deviator. It should be noted that in view of Egs.

(15) and (12), the functional form of the yield criterion is consistent with representation (9).
The plastic multiplier d4, Eq. (10), can be determined from the consistency condition df = 0. Thus,

1 ... _—
di=H . dO',j, H ﬁ dev . dev . (16)

where H is the plastic hardening modulus. For the functional form (14), the gradient tensor can be ex-
pressed as

dé = (dehdel)'?; &= /dé (15)

of of of Oof dc of 0 of of.
30, (az 30, 95 0a, 0000,) " \f; 30, (17)
where
ol G 1 00 V3 3J; 2,
= —0jj; ~ = A=Y A~ T A3 Aan\ =S T SikSkp T 5 5i' 18
aO'ij / aO','j 2O'Sj 6(7,-] 263 COS 30 (2(72Sj SkSkj +36 j) ( )

It is evident, from Eq. (17), that the effect of anisotropy is embedded in the last term appearing in this
expression. In order to evaluate this term, note that according to Eq. (14),

of 7 I

o= #0055y ) (19)
whereas

of. ofe 0t tr(A6%)  Apoy0s,

da; O Ooy;’ C=Apglply = tr(62)  GpnOumn (20)

Substituting for f. from Eq. (12), and differentiating, one obtains

fe A 2
=2f(1 4+ 26+ 30" + - -
ao—i.i f( l z Zz ) (Gmn Gmn)

Aki0kiTpgOpg — ApkTpgOiqTij
2

(1)

which completes the evaluation of the gradient term (17), and thus d4 in Eq. (16).

The final aspect of the formulation of the problem is the specification of the plastic potential function.
The experimental evidence indicates that in the ductile regime a significant dilation takes place prior to
failure. In order to account for this effect, the plastic potential may be assumed in the form

Y =5+ng(0)n(I/I,) =0 (22)

where I = ¢3f, + 1 and n, represents the value of &/(g(6)I) at which the transition from compaction to
dilatancy occurs. Assuming that such a transition takes place along the locus
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o —vg(0)g. =0 (23)
where v is a material constant, one can define 7, as (cf. Pietruszczak et al. (1988))
vef. 4cy -
=——(d—c¢); d= |3 +—1 24
h= 5y (A=) d+ il (24

It is evident from Eq. (24) that 5, depends on f;, so that the functional form (22) is consistent with rep-
resentation (10). Thus, the direction of plastic flow is defined by

(Wl o oy, (o
aU[j o of agl‘j 0o aU[j 00 aG,‘j af;; agij

(25)

Once again, the effect of anisotropy is embedded in the last term appearing in Eq. (25). Given Eq. (22),

oy o on C30

L == 0 — 26

af;: Ne af‘c ncg( )C3 C’%f,‘;‘i‘[ ( )
whereas from Eq. (24)

on ve )

hal I — —_ 27

o "2t TV g 7

which together with Egs. (18) and (21) completely defines the gradient tensor (25).

Given the gradients of both the yield and plastic potential functions, the constitutive relation can be
evaluated by employing a standard plasticity procedure. Assuming the additivity of elastic and plastic strain
rates, and employing the definition (16), one obtains

1 . o .
da,, = |:Df':jkl — = (De % a—fonnkl>:| dSk[; H=H + a—](De , alp (28)
pq s

H\ ""00,, 00,

where H is defined in Eq. (16) and D, is the elastic stiffness. It is noted that the elastic properties should, in
general, reflect the form of anisotropy implied by the microstructure tensor a;;, and thus 4;;.

Finally, it should be emphasized that the formulation presented here is restricted to ductile regime. This
is implied by the form of the hardening law (15). In general, the inception of localized deformation may be
considered as a bifurcation problem (Rudnicki and Rice, 1975). Subsequent behaviour, which is typically
associated with strain softening, may be described by following, for example, a homogenization procedure
similar to that developed in Pietruszczak and Xu (1995) or Pietruszczak (1999).

3. On identification of material functions/parameters

The formulation outlined in the previous section has been applied to model the mechanical character-
istics of a shale taken from the Tournemire site in the Massif Central, France. A comprehensive experi-
mental program has been carried out at Laboratoire de Mécanique de Lille, and the results have been
reported by Niandou (1994) and Niandou et al. (1997). The primary minerals for this shale are kaolinite
(27.5%), quartz (19%), illite (16.5%) and calcite (15%) and the porosity is in the range of 8%. The material
exhibits an inherent transverse isotropy, due to the presence of a set of bedding planes.

In general, the implementation of the constitutive relation (28) requires the specification of material
functions and parameters involved, especially those associated with the distribution function (12), as well as
the failure criterion (11). Consider first the function (12), which describes the variation of uniaxial com-
pressive strength f.. The relevant experimental data (after Niandou (1994)) is provided in Fig. 1, which
shows the variation of f; with the orientation of bedding planes, the latter measured in terms of the angle o.
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f. (MPa)

R

N 1
/4 /2
Sample orientation, « (rad)
A Experimental

————— Best-fit approximation (eq.(30), degree 2)
———— Best-fit approximation (eq.(30), degree 4)

Fig. 1. Variation of uniaxial compressive strength, f., with sample orientation, o.

It is evident that the strength is the highest for « = 0, i.e. when the loading direction is orthogonal to the
bedding planes. At the same time, for o ~ 60° the strength is reduced by over 50%.

In order to approximate the data by the distribution function (12), let us note that for the considered
loading process (o, = 6, = 0; 6, = 01 < 0) and the type of anisotropy (4; = 43 = —0.5 4,), there is

A,jl,lj = A](l — 3[%), l% = C052 o4 (29)
so that
fo=fl144;(1 =3cos>a) + biA>(1 — 3cos® o)’ 4 byd} (1 — 3cos’ o)’ + bsdt(1 — 3cos® o) + - -]
(30)

The best-fit approximations, employing representation (30) are shown in Fig. 1. The results correspond to
approximations incorporating the dyadic products of up to degree 2 (i.e., b = b3 = ---0) and 4, respec-
tively. From the experimental data itself, it is evident that a simple linear representation, based on Eq. (6), is
not adequate here. A reasonable approximation is obtained by incorporating the terms up to order 4 in Eq.
(30), and corresponds to

A, =0.0170251; f =22 MPa; b, =51549; b, =61735.3; bs;=2139820.0 (31)

The next issue is that of identification of the constants appearing in the failure criterion (11). For this
purpose, the results of triaxial tests at different initial confining pressures, as reported by Niandou (1994),
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have been utilized. In particular, it has been assumed that the ultimate strength, for o = 0, is attained at the
following stress conditions

{6, =0.,0,} = {-50,-155}; {—40,-130}; {-20,—-100}; {—5,—55}; {0,—46}; {4.6,4.6} (32)
In the above expressions, g, = a, specifies the magnitude of confining pressure (kept constant during each

test), whereas g, is the maximum vertical stress attained; the units are MPa. It is noted that the considered
loading program corresponds to 6 = 7/6; g(n/6) = 1 in Eq. (11), so that

é:—C3+01 <]%> +Cz<f£_c> (33)

where I = — (o, + 20,); V36 =0, — o,. Moreover, according to Egs. (3) and (4),

llzox/1/2o§+o§; lzzay/,/Zaf—&—aﬁ; ;=1 (34)

so that
fo=f+ 458+ b0+ b, (= Ay lil; = 24317 - 13) (35)

where A4, together with f, by, by and b5 are defined in Eq. (31).

Fig. 2 shows the best-fit approximation based on the polynomial function (33). Here, the experimental
data consists of a set of consecutive pairs {//f;,5/f.}, evaluated based on Egs. (32) and (35). The resulting
values of the coefficients are

¢ = 2.3729; ¢, = 0.9371; c3 = 0.6582 (36)

The elastic constants for Tournemire shale have been identified by Niandou (1994), based on a series of
tests involving partial unloading of the samples. The following values have been assigned

E, =22000 MPa; E, =7000 MPa; vy =0.12; v;3=0.14; G =4000 MPa (37)

127

e
1

5/fe

Best-fit approximation, eq.(33)
A Experimental

Fig. 2. Meridional section (//f.,&/f.) of the failure surface (11).
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Finally, based on the same set of experimental results, the transition from compaction to dilatancy, Eq.
(23), was assumed to occur at v = 0.8, whereas the constant B, Eq. (15), was given the value of 0.005. The
latter was chosen based on the simulations of mechanical characteristics corresponding to =0, as pre-
sented in the next section.

4. Numerical Simulations

In order to illustrate the performance of the model, a number of triaxial tests, as reported by Niandou
(1994) and Niandou et al. (1997), have been simulated. The tests, carried out on Tournemire shale, involved
different initial confining pressures as well as different orientations of the samples relative to the loading
direction. The results of numerical simulations are provided in Figs. 3-7.

Fig. 3 shows the mechanical characteristics for vertical samples, o = 0, tested at confining pressures
ranging from 5 to 40 MPa. Fig. 3a shows the deviatoric stress against the axial deformation, whereas Fig.
3b presents the corresponding volume change characteristics. It is evident that the ultimate strength is
significantly affected by the confining pressure, while the samples undergo progressive compaction prior to
failure. It is noted that for this class of materials, a transition to unstable (strain softening) response, as-
sociated with strain localization, typically occurs in the range of low confining pressures. As the formu-
lation here is restricted to hardening regime, Eq. (15), the numerical simulations were terminated at
B = 0.98. The experimental data, taken from the work of Niandou (1994), also excludes the strain softening
branch.

Fig. 4 shows the mechanical characteristics for inclined samples, o = 45°. Again, the results correspond
to different confining pressures, 5 and 40 MPa. In general, the axial strength is significantly lower compared

o]
zx b>.
I)(
o]
1
0 T T T T T ] 0 0.4 0.8 1.2
0 1 2 3 volumetric strain, €, (%)
axial strain, -g, (%)
—&— 5MPa
—@— 5MPa —&— 30 MPa
—— 30 MPa —%— 40 MPa
—&— 40 MPa o Experimental; 5 MPa
o Experimental v Experimental; 30 MPa

Fig. 3. Numerical simulations of triaxial tests for vertical samples, « = 0; (a) deviatoric stress versus axial strain and (b) volume change
& = —(& + ¢, + &) characteristics.
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0 o5 115 2 25 volumetric strain (%)
axial strain, -, (%)
L ] 5 MPa
—&— 5MPa —%—— 40 MPa
—k— 40 MPa --©-- Experimental (5 MPa)
o Experimental - -¥-- Experimental (40 MPa)

Fig. 4. Numerical simulations of triaxial tests for inclined samples, o = 45°; (a) deviatoric stress versus axial strain and (b) volume
change characteristics.

120 — 120 —

O----0--—_o__

0 T T T T T T 1 |
0 0.4 0.8 1.2 16 0 0.1 0.2 03
axial strain, -g, (%) volumetric strain (%)
—@®— 5MPa —@— 5MPa
—&—— 40 MPa —%*—— 40 MPa
o Experimental --©-- Experimental

Fig. 5. Numerical simulations of triaxial tests for samples loaded in the direction of bedding planes, & = 90°; (a) deviatoric stress versus
axial strain and (b) volume change characteristics.
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20 —

04 -0.2 0 02
shear strain, y,, (%)

—@— 0&90deg
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—A—— 15 deg
—x— 30deg
—%— 70deg
—<o—— 80deg

Fig. 6. Predicted generation of shear strains in samples tested at different orientations (confining pressure of 5 MPa).

60 —
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0 0.2 04 0.6 0.8

volumetric strain (%)

—@— Odeg

———— 10 deg
—&— 20 deg
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—A— 45deg
—<o— 60 deg
—%— 90 deg

Fig. 7. Evolution of volume change with orientation of the sample (confining pressure of 5 MPa).
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to that corresponding to o = 0, Fig. 3, while the material undergoes a transition from compaction to dil-
atancy, Fig. 4b. Both these trends are consistent with the experimental evidence. Fig. 5 presents the same
characteristics for samples at o = 90°, i.e. when the load is in the direction of the bedding planes. General
observations are similar, i.e. the strength increases in relation to samples tested at o = 45°, while the dil-
atancy effects become even more pronounced.

Comparing the results in Figs. 3-5 with the experimental data, is it clear that the basic trends are quite
consistent. Also, the quantitative predictions seem to be quite reasonable. It should be pointed out here that
the experimental program was quite comprehensive as it involved, in addition to monotonic tests, a series of
triaxial tests with complete and partial unloading. However, a close examination of the results reveals that
the experimental scatter, due to inhomogeneity of the material, was quite significant, so that the quanti-
tative aspect should indeed be regarded with caution. Moreover, it should be emphasized that in the for-
mulation of the problem, the hardening characteristics have been described by invoking only one scalar
parameter, B, Eq. (15). Apparently, a more sophisticated approach may be employed by assuming that
these characteristics are affected by the confining pressure (cf. Pietruszczak et al. (1988)). The later, how-
ever, would inevitably result in a set of additional parameters/functions, thereby making the formulation
less appealing.

The effects of anisotropy are discussed further in Figs. 6 and 7. In general, the numerical simulations
reveal that the deformation mode remains axisymmetric only for a vertical sample (¢ =0). For o = 90°,
there is ¢, # ¢., whereas for all inclined samples an additional generation of shear strains takes place. This is
shown in Fig. 6, which presents the variation of shear strain with deviatoric stress, for a number of distinct
orientations. It is noted that the distortions were not measured experimentally, so that no direct com-
parison could be made. Another interesting feature is the evolution of volume characteristics, as shown in
Fig. 7. For the selected value of v = 0.8 (Section 3), an isotropic material will undergo a significant dilation
for f > v, Eq. (23), irrespective of the orientation of the sample. This is clearly not the case here. In fact, it is
evident from Fig. 7 that one of the manifestations of inherent anisotropy is the tendency to suppress the
dilation for orientations close to vertical. Thus, for 0° < o < 20° the predominant deformation mode is the
compaction, while for o > 30°, the sample dilates prior to failure. Again, these trends are consistent with
the experimental evidence, as reported by Niandou et al. (1997).

5. Final remarks

In this work, a mathematical formulation has been put forth for the description of deformation
characteristics of anisotropic sedimentary rocks. The primary focus was to propose an approach which
is rigorous, but at the same time is simple enough to be implemented for the solution of practical engi-
neering problems. The framework has been illustrated by numerical examples simulating a series of
triaxial tests carried out on Tournemire shale. It appears that the basic trends in mechanical
characteristics, i.e. sensitivity of the axial strength, axial deformation and volume change to the orientation
of the sample, have been predicted quite reasonably. Also, the quantitative predictions are fairly consistent
with the experimental evidence, especially given the uncertainty associated with inhomogeneity of the
material.

For materials displaying a strong inherent anisotropy, the principal material directions are known a
priori. Thus, the problem does not require any specific measure of fabric. This is not the case, however, in
the context of induced anisotropy. The latter requires, in addition to an explicit definition of fabric, an
appropriate evolution law for the fabric tensor. This issue is relevant to a broad class of rocks, including
sandstone, porous chalk, etc., and will be addressed separately.



648 S. Pietruszczak et al. | International Journal of Solids and Structures 39 (2002) 637-648

References

Amadei, B., 1983. Rock Anisotropy and the Theory of Stress Measurements. Springer, Berlin.

Atwell, P.B., Sandford, M.A., 1974. Intrinsic shear strength of a brittle anisotropic rock — I: experimental and mechanical
interpretation. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 11, 423-430.

Boehler, J.P., Sawczuk, A., 1970. Equilibre limite des sols anisotropes. J. de Mécanique 3, 5-33.

Boehler, J.P., Sawczuk, A., 1977. On yielding of oriented solids. Acta Mechanica 27, 185-206.

Donath, F.A., 1961. Experimental study of shear failure in anisotropic rocks. Geol. Soc. Am. Bull. 72, 985-990.

Duveau, G., Shao, J.F., Henry, J.P., 1998. Assessment of some failure criteria for strongly anisotropic materials. Mech. Cohesive Frict.
Mater. 3, 1-26.

Hoek, E., 1968. Brittle failure of rock. In: Stagg, G., Zienkiewicz, O.C. (Eds.), Rock Mechanics in Engineering Practice. Wiley,
London, pp. 99-124.

Hoek, E., 1983. Strength of jointed rock masses. Geotechnique 33, 187-205.

Kanatani, K., 1984. Distribution of directional data and fabric tensor. Int. J. Engng. Sci. 22, 149-161.

Kwasniewski, M.A., 1993. Mechanical behaviour of anisotropic rocks. In: Hudson, J.A. (Ed.), Comprehensive Rock Engineering,
vol. 1: Fundamentals. Pergamon Press, Oxford, pp. 285-312.

Lerau, J., Saint Leu, C., Sirieys, P., 1981. Anisotrophie de la dilatance des roches schisteuses. Rock Mech. Rock Engng. 13, 185-196.

McLamore, R., Gray, K.E., 1967. The mechanical behaviour of anisotropic sedimentary rocks. J. Engng. Industry, Trans. ASME 8§89,
62-73.

Niandou, H., 1994. Etude du comportement rhéologique et modélisation de I’argilite de Tournemire: Applications a la stabilité
d’ouvrages souterrains. Ph.D. Thesis, Université de Lille.

Niandou, H., Shao, J.F., Henry, J.P., Fourmaintraux, D., 1997. Laboratory investigation of the mechanical behaviour of Tournemire
shale. Int. J. Rock Mech. Min. Sci. 34, 3-16.

Pietruszczak, S., 1999. On homogeneous and localized deformation in water-infiltrated soils. J. Damage Mech. 8, 233-253.

Pietruszczak, S., Mroz, Z., 2001. On failure criteria for anisotropic cohesive-frictional materials. Int. J. Numer. Anal. Meth. Geomech.
25, 509-524.

Pietruszczak, S., Xu, G., 1995. Brittle response of concrete as a localization problem. Int. J. Solids Struct. 32, 1517-1533.

Pietruszczak, S., Jiang, J., Mirza, F.A., 1988. An elastoplastic constitutive model for concrete. Int. J. Solids Struct. 24, 705-722.

Ramamurthy, T., 1993. Strength and modulus responses of anisotropic rocks. In: Hudson, J.A. (Ed.), Comprehensive Rock
Engineering, vol. 1: Fundamentals. Pergamon Press, Oxford, pp. 319-329.

Rudnicki, J.W., Rice, J.R., 1975. Conditions for the localization of deformation in pressure-sensitive dilatant materials. J. Mech. Phys.
Solids 23, 371-394.



