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Abstract

This paper presents a constitutive relation for modelling the inelastic response of sedimentary rocks. The inherent

anisotropy of this class of materials is described by employing a second-order microstructure tensor, whose eigenvectors

define the principal material triad. Higher-order dyadic products of this tensor are incorporated in the distribution

function, which specifies the directional dependence of strength parameters. The mathematical formulation is applied to

model the mechanical characteristics of Tournemire shale. Several triaxial tests are simulated, at various initial con-

fining pressures, for samples tested at different orientation relative to the loading direction. The results are compared

with the available experimental data. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Among sedimentary rocks, the most widespread are shale, siltstone and claystone. These rocks, which
are formed by deposits of clay and silt sediment, exhibit strong inherent anisotropy, manifesting itself in a
directional dependence of deformation characteristics. The anisotropy is strongly related to the micro-
structure, in particular the existence of bedding planes which mark the limits of strata and can be easily
identified by a visual examination. The study of the mechanical behaviour of sedimentary rocks, especially
shale and mudstone, is of particular interest to the oil exploration industry as well as to civil and mining
engineering. These materials are often unavoidable in foundations of a broad range of civil structures, in
underground excavations as well as tunnelling.
Over the last few decades, an extensive research effort has been devoted to study the mechanical be-

haviour of anisotropic rocks. Comprehensive references on this topic can be found in a number of review
papers (see e.g., Amadei (1983), Kwasniewski (1993) and Ramamurthy (1993)). One significant direction of
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research has been that involving the experimental component. In general, several experimental studies were
carried out (cf. Donath (1961), McLamore and Gray (1967), Hoek (1968), Atwell and Sandford (1974),
Lerau et al. (1981) and Hoek (1983)) and the main focus was the directional dependence of rock strength.
The results generally indicate that the maximum axial compressive strength is associated with configura-
tions in which the bedding planes are either parallel or perpendicular to the loading direction. At the same
time, the minimum strength is typically associated with failure along the weakness plane, which corre-
sponds to sample orientations within the range 30–60�.
In parallel with experimental studies, extensive research has been carried out on formulation of ap-

propriate general failure criteria. An extensive review on this topic, examining different approaches, is
provided in the article by Duveau et al. (1998). In general, relatively little work has been done on the
description of progressive failure in this class of materials, which stems primarily from difficulties associated
with the formulation of the problem. The rigorous approach, based on general representation theorems for
tensorial functions (Boehler and Sawczuk, 1970, 1977), is very complex and has never been applied to any
practical problem.
The objective of this paper is to propose an approach which retains the mathematical rigour and, at the

same time, is pragmatic, i.e. simple enough to be applied to solve some practical engineering problems. The
formulation incorporates a scalar anisotropy parameter which is expressed in terms of mixed invariants of
the stress and structure-orientation tensors. Such a parameter has recently been introduced by Pietruszczak
and Mroz (2001) in the context of specification of the conditions at failure. The main focus of this work is
on constructing a complete plasticity framework for describing the deformation process in anisotropic
sedimentary rocks. In the next section, the formulation of the problem is outlined, followed by a discussion
on the identification of material functions involved. The formulation is applied to study the behaviour of
Tournemire shale. In particular, several triaxial tests are simulated at different initial confining pressures.
The emphasis is on modelling of the dependence of deformation characteristics on the orientation of the
sample relative to the direction of loading.

2. A constitutive model for anisotropic rocks

Consider first the specification of the conditions at failure. Following the framework developed in
Pietruszczak and Mroz (2001), assume that the failure criterion can be expressed in a simplified form

F ¼ F ðr; aÞ ¼ F ðtrr; trr2; trr3; gÞ ¼ 0 ð1Þ
In the above equation, a is a microstructure tensor and g is a scalar anisotropy parameter which represents
the projection of this tensor on a suitably defined loading direction l, i.e.

g ¼ aijlilj ð2Þ

In order to define the loading vector l, consider the principal triad eðiÞ, i ¼ 1; 2; 3; of the microstructure
tensor a and specify the traction moduli on the planes normal to the principal axes

L1 ¼ ðr211 þ r212 þ r213Þ
1=2

; L2 ¼ ðr212 þ r222 þ r223Þ
1=2

; L3 ¼ ðr213 þ r223 þ r233Þ
1=2 ð3Þ

The generalized loading vector l is now defined as

li ¼
Li

ðLkLkÞ1=2
; Li ¼ L1e

ð1Þ
i þ L2eð2Þi þ L3eð3Þi ð4Þ

It can be shown (see Pietruszczak and Mroz (2001)) that the traction moduli (3) can be expressed as
mixed invariants of the stress and structure-orientation tensors, so that the projection of a on the direction l
becomes
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g ¼ aijlilj ¼
trðar2Þ
trr2

ð5Þ

Thus, the anisotropy parameter g specifies the effect of load orientation relative to material axes and is
expressed as the ratio of the joint invariant to the second stress invariant. It is a homogeneous function of
stress of the degree zero, so that the stress magnitude does not affect its value.
Another way of expressing the definition (5) is to employ the deviatoric part A of the microstructure

tensor, so that

g ¼ ĝgð1þ AijliljÞ; Aij ¼ ðaij � ĝgdijÞ=ĝg; ĝg ¼ 1
3
akk ð6Þ

The above distribution function is similar to that employed by Kanatani (1984). Here, A is a traceless
symmetric tensor describing the bias in the spatial distribution of gðlÞ with respect to the mean value ĝg. A
more general expression for g can be obtained by including higher-order tensors

g ¼ ĝgð1þ Aijlilj þ Aijklliljlkll þ Aijklmnliljlklllmln þ � � �Þ ð7Þ

A special case of this representation, which is pursued further in this paper, corresponds to introducing
dyadic products of A, i.e. Aijkl ¼ b1AijAkl; Aijklmn ¼ b2AijAklAmn, etc., so that

g ¼ ĝg½1þ Aijlilj þ b1ðAijliljÞ2 þ b2ðAijliljÞ3 þ � � �� ð8Þ

With the notion of anisotropy parameter g, as defined above, let us turn our attention now to the de-
scription of inelastic properties of sedimentary rocks. In general, the problem can be formulated within the
framework of elastoplasticity by assuming the yield criterion in the form

f ¼ f ðr; a; epÞ ¼ f ðtrr; trr2; trr3; g; bÞ ¼ 0 ð9Þ

In Eq. (9), b is a scalar-valued function of plastic deformation. The flow rule may now be written as

depij ¼ dk
ow
orij

; w ¼ wðtrr; trr2; trr3; gÞ ð10Þ

where w ¼ const. is the plastic potential.
A specific formulation can be obtained by a suitable generalization of classical isotropic criteria. Con-

sider, for this purpose, the plasticity framework for brittle-plastic materials as outlined in the article by
Pietruszczak et al. (1988). Assume that the conditions at failure can be described by employing a quadratic
form

F ¼ c1
r

gðhÞfc

� �
þ c2

r
gðhÞfc

� �2
� c3

�
þ I
fc

�
¼ 0 ð11Þ

In the equation above, r ¼ J 1=22 ¼ ðtr s2Þ1=2, I ¼ �trr, h ¼ ð1=3Þ sin�1ð�3
ffiffiffi
3

p
J3=2r3Þ and s is the stress de-

viator. The parameter h represents Lode’s angle and is defined within the interval �p=66 h6 p=6, while
gðhÞ satisfies gðp=6Þ ¼ 1, gð�p=6Þ ¼ K, where K is a constant. Moreover, c’s are material constants and fc
represents the uniaxial compressive strength. For an isotropic material fc ¼ const. and the criterion (11) is
path independent. In order to account for inherent anisotropy, assume that fc is affected by the orientation
of the sample and describe its variation by incorporating a distribution function similar to Eq. (8), i.e.

fc ¼ f̂f ½1þ Aijlilj þ b1ðAijliljÞ2 þ b2ðAijliljÞ3 þ � � �� ð12Þ

Thus, the anisotropy parameter g, appearing in the general form of the failure criterion (1), is now explicitly
identified with fc. Moreover, since the value of fc depends on the relative orientation of both the stress and
microstructure tensors, the representation (12) implies the path dependency of Eq. (11).
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For further analysis, it is convenient to express Eq. (11) in the form

F ¼ r � gðhÞrc ¼ 0; rc ¼
�c1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc21 þ 4c2ðc3 þ I=fcÞÞ

p
2c2

fc ð13Þ

The yield function may now be assumed in a functional form similar to Eq. (13), i.e.

f ¼ r � bðnÞgðhÞrc ¼ 0 ð14Þ
Here, b 
 ð0; 1Þ is a hardening function, and n is a suitably chosen damage parameter. Restricting the
considerations to the ductile regime, the function b can be selected in a simple hyperbolic form

bðnÞ ¼ n
Bþ n

; dn ¼ ðdepij depijÞ
1=2

; n ¼
Z
dn ð15Þ

where B is a material constant and e represents the strain deviator. It should be noted that in view of Eqs.
(15) and (12), the functional form of the yield criterion is consistent with representation (9).
The plastic multiplier dk, Eq. (10), can be determined from the consistency condition df ¼ 0. Thus,

dk ¼ H�1 of
orij

drij; H ¼ � of
ob
db
dn

dev
ow
orij

dev
ow
orij

� �1=2
ð16Þ

where H is the plastic hardening modulus. For the functional form (14), the gradient tensor can be ex-
pressed as

of
orij

¼ of
oI

oI
orij

�
þ of

or
or
orij

þ of
oh

oh
orij

�
þ of

ofc

ofc
orij

� �
ð17Þ

where

oI
orij

¼ �dij;
or
orij

¼ 1

2r
sij;

oh
orij

¼
ffiffiffi
3

p

2r3 cos 3h

3J3
2r2

sij

�
� sikskj þ

2

3
r2dij

�
ð18Þ

It is evident, from Eq. (17), that the effect of anisotropy is embedded in the last term appearing in this
expression. In order to evaluate this term, note that according to Eq. (14),

of
ofc

¼ �bðnÞgðhÞ rc
fc

�
� I
2c2rc þ c1fc

�
ð19Þ

whereas

ofc
orij

¼ ofc
of

of
orij

; f ¼ Apqlplq ¼
trðAr2Þ
trðr2Þ ¼ Apkrpqrkq

rmnrmn
ð20Þ

Substituting for fc from Eq. (12), and differentiating, one obtains

ofc
orij

¼ 2f̂f ð1þ 2b1f þ 3b2f2 þ � � �ÞAkirkjrpqrpq � Apkrpqrkqrij
ðrmnrmnÞ2

ð21Þ

which completes the evaluation of the gradient term (17), and thus dk in Eq. (16).
The final aspect of the formulation of the problem is the specification of the plastic potential function.

The experimental evidence indicates that in the ductile regime a significant dilation takes place prior to
failure. In order to account for this effect, the plastic potential may be assumed in the form

w ¼ r þ gcgðhÞI lnðI=IoÞ ¼ 0 ð22Þ
where I ¼ c3fc þ I and gc represents the value of r=ðgðhÞIÞ at which the transition from compaction to
dilatancy occurs. Assuming that such a transition takes place along the locus
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r � tgðhÞrc ¼ 0 ð23Þ
where t is a material constant, one can define gc as (cf. Pietruszczak et al. (1988))

gc ¼
tefc
2c2Io

ðd � c1Þ; d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ

4c2
efc
Io

s
ð24Þ

It is evident from Eq. (24) that gc depends on fc, so that the functional form (22) is consistent with rep-
resentation (10). Thus, the direction of plastic flow is defined by

ow
orij

¼ ow
oI

oI
orij

�
þ ow

or
or
orij

þ ow
oh

oh
orij

�
þ ow

ofc

ofc
orij

� �
ð25Þ

Once again, the effect of anisotropy is embedded in the last term appearing in Eq. (25). Given Eq. (22),

ow
ofc

¼ � r
gc

ogc
ofc

þ gcgðhÞc3 �
c3r

c3fc þ I
ð26Þ

whereas from Eq. (24)

ogc
ofc

¼ te
2c2Io

ðd � c1Þ þ
t
fcd

ð27Þ

which together with Eqs. (18) and (21) completely defines the gradient tensor (25).
Given the gradients of both the yield and plastic potential functions, the constitutive relation can be

evaluated by employing a standard plasticity procedure. Assuming the additivity of elastic and plastic strain
rates, and employing the definition (16), one obtains

drij ¼ Deijkl

�
� 1

H
Deijpq

ow
orpq

of
ormn

Demnkl

� ��
dekl; H ¼ H þ of

orpq
Depqrs

ow
orrs

ð28Þ

whereH is defined in Eq. (16) and Deijkl is the elastic stiffness. It is noted that the elastic properties should, in
general, reflect the form of anisotropy implied by the microstructure tensor aij, and thus Aij.
Finally, it should be emphasized that the formulation presented here is restricted to ductile regime. This

is implied by the form of the hardening law (15). In general, the inception of localized deformation may be
considered as a bifurcation problem (Rudnicki and Rice, 1975). Subsequent behaviour, which is typically
associated with strain softening, may be described by following, for example, a homogenization procedure
similar to that developed in Pietruszczak and Xu (1995) or Pietruszczak (1999).

3. On identification of material functions/parameters

The formulation outlined in the previous section has been applied to model the mechanical character-
istics of a shale taken from the Tournemire site in the Massif Central, France. A comprehensive experi-
mental program has been carried out at Laboratoire de M�eecanique de Lille, and the results have been
reported by Niandou (1994) and Niandou et al. (1997). The primary minerals for this shale are kaolinite
(27.5%), quartz (19%), illite (16.5%) and calcite (15%) and the porosity is in the range of 8%. The material
exhibits an inherent transverse isotropy, due to the presence of a set of bedding planes.
In general, the implementation of the constitutive relation (28) requires the specification of material

functions and parameters involved, especially those associated with the distribution function (12), as well as
the failure criterion (11). Consider first the function (12), which describes the variation of uniaxial com-
pressive strength fc. The relevant experimental data (after Niandou (1994)) is provided in Fig. 1, which
shows the variation of fc with the orientation of bedding planes, the latter measured in terms of the angle a.
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It is evident that the strength is the highest for a ¼ 0, i.e. when the loading direction is orthogonal to the
bedding planes. At the same time, for a � 60� the strength is reduced by over 50%.
In order to approximate the data by the distribution function (12), let us note that for the considered

loading process ðrx ¼ rz ¼ 0; ry ¼ r1 < 0Þ and the type of anisotropy ðA1 ¼ A3 ¼ �0:5 A2Þ, there is

Aijlilj ¼ A1ð1� 3l22Þ; l22 ¼ cos2 a ð29Þ

so that

fc ¼ f̂f ½1þ A1ð1� 3 cos2 aÞ þ b1A21ð1� 3 cos2 aÞ
2 þ b2A31ð1� 3 cos2 aÞ

3 þ b3A41ð1� 3 cos2 aÞ4 þ � � ��
ð30Þ

The best-fit approximations, employing representation (30) are shown in Fig. 1. The results correspond to
approximations incorporating the dyadic products of up to degree 2 (i.e., b2 ¼ b3 ¼ � � � 0) and 4, respec-
tively. From the experimental data itself, it is evident that a simple linear representation, based on Eq. (6), is
not adequate here. A reasonable approximation is obtained by incorporating the terms up to order 4 in Eq.
(30), and corresponds to

A1 ¼ 0:0170251; f̂f ¼ 22 MPa; b1 ¼ 515:49; b2 ¼ 61735:3; b3 ¼ 2139820:0 ð31Þ

The next issue is that of identification of the constants appearing in the failure criterion (11). For this
purpose, the results of triaxial tests at different initial confining pressures, as reported by Niandou (1994),

Fig. 1. Variation of uniaxial compressive strength, fc, with sample orientation, a.
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have been utilized. In particular, it has been assumed that the ultimate strength, for a ¼ 0, is attained at the
following stress conditions

frx ¼ rz; ryg ¼ f�50;�155g; f�40;�130g; f�20;�100g; f�5;�55g; f0;�46g; f4:6; 4:6g ð32Þ
In the above expressions, rx ¼ rz specifies the magnitude of confining pressure (kept constant during each
test), whereas ry is the maximum vertical stress attained; the units are MPa. It is noted that the considered
loading program corresponds to h ¼ p=6; gðp=6Þ ¼ 1 in Eq. (11), so that

I
fc

¼ �c3 þ c1
�rr
fc

 !
þ c2

�rr
fc

 !2
ð33Þ

where I ¼ �ðry þ 2rxÞ;
ffiffiffi
3

p
�rr ¼ rx � ry . Moreover, according to Eqs. (3) and (4),

l1 ¼ rx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r2x þ r2y

q.
; l2 ¼ ry

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r2x þ r2y

q.
; l3 ¼ l1 ð34Þ

so that

fc ¼ f̂f ð1þ f þ b1f2 þ b2f3 þ b3f4Þ; f ¼ Aijkllilj ¼ 2A21ðl21 � l22Þ ð35Þ
where A1, together with f̂f , b1, b2 and b3 are defined in Eq. (31).
Fig. 2 shows the best-fit approximation based on the polynomial function (33). Here, the experimental

data consists of a set of consecutive pairs {I=fc; �rr=fc}, evaluated based on Eqs. (32) and (35). The resulting
values of the coefficients are

c1 ¼ 2:3729; c2 ¼ 0:9371; c3 ¼ 0:6582 ð36Þ
The elastic constants for Tournemire shale have been identified by Niandou (1994), based on a series of

tests involving partial unloading of the samples. The following values have been assigned

E1 ¼ 22000 MPa; E2 ¼ 7000 MPa; v21 ¼ 0:12; v13 ¼ 0:14; G ¼ 4000 MPa ð37Þ

Fig. 2. Meridional section (I=fc; �rr=fc) of the failure surface (11).
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Finally, based on the same set of experimental results, the transition from compaction to dilatancy, Eq.
(23), was assumed to occur at v ¼ 0:8, whereas the constant B, Eq. (15), was given the value of 0.005. The
latter was chosen based on the simulations of mechanical characteristics corresponding to a¼ 0, as pre-
sented in the next section.

4. Numerical Simulations

In order to illustrate the performance of the model, a number of triaxial tests, as reported by Niandou
(1994) and Niandou et al. (1997), have been simulated. The tests, carried out on Tournemire shale, involved
different initial confining pressures as well as different orientations of the samples relative to the loading
direction. The results of numerical simulations are provided in Figs. 3–7.
Fig. 3 shows the mechanical characteristics for vertical samples, a ¼ 0, tested at confining pressures

ranging from 5 to 40 MPa. Fig. 3a shows the deviatoric stress against the axial deformation, whereas Fig.
3b presents the corresponding volume change characteristics. It is evident that the ultimate strength is
significantly affected by the confining pressure, while the samples undergo progressive compaction prior to
failure. It is noted that for this class of materials, a transition to unstable (strain softening) response, as-
sociated with strain localization, typically occurs in the range of low confining pressures. As the formu-
lation here is restricted to hardening regime, Eq. (15), the numerical simulations were terminated at
bP 0:98. The experimental data, taken from the work of Niandou (1994), also excludes the strain softening
branch.
Fig. 4 shows the mechanical characteristics for inclined samples, a ¼ 45�. Again, the results correspond

to different confining pressures, 5 and 40 MPa. In general, the axial strength is significantly lower compared

Fig. 3. Numerical simulations of triaxial tests for vertical samples, a ¼ 0; (a) deviatoric stress versus axial strain and (b) volume change
ev ¼ �ðex þ ey þ ezÞ characteristics.
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Fig. 4. Numerical simulations of triaxial tests for inclined samples, a ¼ 45�; (a) deviatoric stress versus axial strain and (b) volume
change characteristics.

Fig. 5. Numerical simulations of triaxial tests for samples loaded in the direction of bedding planes, a ¼ 90�; (a) deviatoric stress versus
axial strain and (b) volume change characteristics.
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Fig. 6. Predicted generation of shear strains in samples tested at different orientations (confining pressure of 5 MPa).

Fig. 7. Evolution of volume change with orientation of the sample (confining pressure of 5 MPa).
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to that corresponding to a ¼ 0, Fig. 3, while the material undergoes a transition from compaction to dil-
atancy, Fig. 4b. Both these trends are consistent with the experimental evidence. Fig. 5 presents the same
characteristics for samples at a ¼ 90�, i.e. when the load is in the direction of the bedding planes. General
observations are similar, i.e. the strength increases in relation to samples tested at a ¼ 45�, while the dil-
atancy effects become even more pronounced.
Comparing the results in Figs. 3–5 with the experimental data, is it clear that the basic trends are quite

consistent. Also, the quantitative predictions seem to be quite reasonable. It should be pointed out here that
the experimental program was quite comprehensive as it involved, in addition to monotonic tests, a series of
triaxial tests with complete and partial unloading. However, a close examination of the results reveals that
the experimental scatter, due to inhomogeneity of the material, was quite significant, so that the quanti-
tative aspect should indeed be regarded with caution. Moreover, it should be emphasized that in the for-
mulation of the problem, the hardening characteristics have been described by invoking only one scalar
parameter, B, Eq. (15). Apparently, a more sophisticated approach may be employed by assuming that
these characteristics are affected by the confining pressure (cf. Pietruszczak et al. (1988)). The later, how-
ever, would inevitably result in a set of additional parameters/functions, thereby making the formulation
less appealing.
The effects of anisotropy are discussed further in Figs. 6 and 7. In general, the numerical simulations

reveal that the deformation mode remains axisymmetric only for a vertical sample (a ¼ 0). For a ¼ 90�,
there is ex 6¼ ez, whereas for all inclined samples an additional generation of shear strains takes place. This is
shown in Fig. 6, which presents the variation of shear strain with deviatoric stress, for a number of distinct
orientations. It is noted that the distortions were not measured experimentally, so that no direct com-
parison could be made. Another interesting feature is the evolution of volume characteristics, as shown in
Fig. 7. For the selected value of v ¼ 0:8 (Section 3), an isotropic material will undergo a significant dilation
for b > v, Eq. (23), irrespective of the orientation of the sample. This is clearly not the case here. In fact, it is
evident from Fig. 7 that one of the manifestations of inherent anisotropy is the tendency to suppress the
dilation for orientations close to vertical. Thus, for 0�6 a6 20� the predominant deformation mode is the
compaction, while for a > 30�, the sample dilates prior to failure. Again, these trends are consistent with
the experimental evidence, as reported by Niandou et al. (1997).

5. Final remarks

In this work, a mathematical formulation has been put forth for the description of deformation
characteristics of anisotropic sedimentary rocks. The primary focus was to propose an approach which
is rigorous, but at the same time is simple enough to be implemented for the solution of practical engi-
neering problems. The framework has been illustrated by numerical examples simulating a series of
triaxial tests carried out on Tournemire shale. It appears that the basic trends in mechanical
characteristics, i.e. sensitivity of the axial strength, axial deformation and volume change to the orientation
of the sample, have been predicted quite reasonably. Also, the quantitative predictions are fairly consistent
with the experimental evidence, especially given the uncertainty associated with inhomogeneity of the
material.
For materials displaying a strong inherent anisotropy, the principal material directions are known a

priori. Thus, the problem does not require any specific measure of fabric. This is not the case, however, in
the context of induced anisotropy. The latter requires, in addition to an explicit definition of fabric, an
appropriate evolution law for the fabric tensor. This issue is relevant to a broad class of rocks, including
sandstone, porous chalk, etc., and will be addressed separately.
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